不管是船舶还是反应堆容器,焊接在各种可靠的金属结构的形成过程中都是非常关键的一种操作方式。当焊接失败时,整个结构往往也会失败,所以对焊接质量的期望只会越来越高。使用局部加热源的工艺例如焊接,很可能会导致变形的产生。很厚的金属零部件的焊接过程并不稳定,如果没有外部力量的话将会难以控制。
在大功率激光焊接中,在激光强度最高的区域的少量金属会蒸发。深熔焊接在工件上会创建一个被称为“小孔”的垂直空腔。在此过程中,激光束不仅融化金属,也会产生金属蒸汽。这种消散的蒸汽对熔融的金属施加压力并部分取代它。与此同时,材料继续融化。结果就是形成一个深且窄并且充满蒸汽的洞,或者称之为“小孔”(keyhole),它被熔融的金属所环绕。随着激光束的移动,小孔会随之在工件上移动。熔融的金属围绕着小孔流动并在沿途凝固。这就形成了具有均匀内部结构的深且窄的焊缝。
众所周知,用深熔焊接来焊接铝的问题主要是由低粘度引起的熔体高动态行为。再加上高的热导率,由此产生的熔池很宽。焊接的表面变得不稳定,结果是金属液滴发生飞溅与喷射,并因而产生未焊满、咬边、弧坑、孔洞或空洞等焊接缺陷,所有这些缺陷会对焊接的力学性能产生不利影响。如果材料有缺失,往往需要用电弧焊进行后处理,来填满缺少的材料或使焊缝的视觉效果更佳,这也是表面质量的一个指标。此外,在某些领域,平滑的焊缝表面变得非常重要,例如食品工业,主要是因为粗糙的表面可能会携带细菌。
不受控制的焊接过程会带来一个副作用,即加速焊缝金属的滴落。这些液滴使整个过程变“脏”,并导致焊缝冷却后材料的缺失。第二,
马兰戈尼(Marangoni)效应导致非均匀焊缝的产生,这也是工件中应力和/或变形发生的一个原因。部分焊接熔池在表面张力和电磁力作用下移动,从而引起材料的非均匀分布以及焊接熔池不同部位的凝固速度不同。一旦焊缝固化,由于分布和冷却时间不均匀,它可能会由不同材料构成。